Starting from:
$26.99

$20.99

Homework #6 Solution

1.  [8 points] Backpropagation

Consider  the  deep net  in the  figure below consisting  of an input  layer,  an output layer,  and a hidden  layer.   The  feed-forward  computations performed  by the  deep  net  are  as follows: every input  ai is multiplied  by a set of fully-connected  weights uij connecting  the input  layer to the  hidden  layer.  The  resulting  weighted  signals are then  summed  and  combined  with  a

bias  ej .  This  results  in the  activation signal  zj   = ej  + Pi ai uij .  The  hidden  layer  applies

activation function  g on zj   resulting  in the  signal bj .  In a similar  fashion,  the  hidden  layer

activation signals bj  are multiplied  by the weights connecting  the hidden  layer to the output

layer wjk , a bias fk is added and the resulting signal hk  is transformed by the output activation

function  g to  form the  network  output ck .  The  loss between  the  desired  target  tk  and  the



2
 
output ck  is given by the MSE: E = 1 Pk


(ck − tk )2, where tk denotes the ground truth signal

corresponding  to ck .  Training  a neural  network  involves determining the  set of parameters

θ = {U, W, e, f} that minimize E.  This problem  can be solved using gradient descent,  which



∂θ
 
requires determining ∂E


for all θ in the model.

 

 

 

 

 

 

 

 



1+e−x
 
(a)  For  g(x)  = σ(x)  =     1      , compute  the  derivative  g0(x)  of g(x)  as a function  of σ(x).

Your answer:

 

 

 

 

 



∂hk
 
(b)  We denote  by δk  =  ∂E


the  error  signal  of neuron  k in the  second linear  layer  of the

network.  Compute  δk  as a function  of ck , tk , g0  and hk .

Your answer:



∂wjk
 
(c)  Compute  ∂E  . Use δk  and bj .

Your answer:

 

 

 

 

 

 



∂fk
 
(d)  Compute    ∂E . Use δk .

Your answer:

 

 

 

 

 



∂zj
 
(e)  We denote by ψj  = ∂E


the error signal of neuron j in the first linear layer of the network.

Compute  ψj  as a function  of δk , wjk , g0  and zj . Your answer:

 

 

 

 

 

 



∂uij
 
(f )  Compute  ∂E  . Use ψj  and ai .

Your answer:

 

 

 

 

 

 



∂ej
 
(g)  Compute   ∂E . Use ψj .

Your answer:

More products