Starting from:
$26.99

$20.99

Homework #5 Solution

1.  [6 points] Multiclass  Classification  Basics

 

(a)  Which  of the  following is the  most  suitable  application for multiclass  classification?

Which is the most suitable  application for binary  classification?

i.  Predicting tomorrow’s stock price;

ii.  Recognizing flower species from photos; iii.  Deciding credit  card approval  for a bank; iv.  Assigning captions  to pictures.

Your answer:

 

 

 

 

 

 

 

 

 

(b)  Suppose in an n-dimensional Euclidean  space where n ≥ 3, we have n samples x(i) = ei for i = 1...n (which means x(1)  = (1, 0, ..., 0)n , x(2)  = (0, 1, ..., 0)n , ..., x(n) = (0, 0, ..., 1)n ), with  x(i)  having  class i.   What  are  the  numbers  of binary  SVM classifiers we need  to train,  to get 1-vs-all and 1-vs-1 multiclass  classifiers?

Your answer:

 

 

 

 

 

 

 

 

 

(c)  Suppose we have trained a 1-vs-1 multiclass  classifier from binary SVM classifiers on the samples of the previous question.  What  are the regions in the Euclidean  space that will receive the same number  of majority  votes from more than  one classes?  You can ignore samples on the decision boundary of any binary  SVM.

Your answer:

2.  [8 points] Multiclass  SVM

Consider  the objective  function  of multiclass  SVM as

 

min


n

C kwk2 + X ξ(i)

w,ξ(i) ≥0  2


 

i=1

 

s.t.    wy(i) φ(x(i) ) − wyˆφ(x(i)) ≥ 1 − ξ(i)    ∀i = 1...n, yˆ = 0...K − 1, yˆ = yi

 

Let n = K = 3, d = 2, x(1)  = (0, −1), x(2)  = (1, 0), x(3)  = (0, 1), y(1)  = 0, y(2)  = 1, y(3)  =

2, and φ(x) = x.

(a)  Rewrite the objective function with w being a K d-dimensional vector (w1 , w2, w3, w4, w5 , w6 )

and with the specific choices of x, y and φ.

Your answer:

 

 

 

 

 

 

 

 

 

(b)  Rewrite the objective function you get in (a) such that there are no slack variables  ξ(i) .

Your answer:

 

 

 

 

 

 

 

 

 

(c)  Let wt  = (1, 1, 1, 2, 1, −1) . Compute  the derivative  of the objective function  you get in (b) w.r.t.  w2, at wt , where w2 is the weight of second dimension on Class 0 (in case you used non-conventional definition of w in (a)).

Your answer:

 

 

 

 

 

 

 

 

 

 

(d)  Prove  that

 

 Max{1 + W  T/y 0(x)} = lim in E exp ( 1+ w T/y 0(x)}


 

 

 

 

 

 

 

 

 

2

Your answer:

 

More products