Starting from:
$29.99

$23.99

Homework Assignment 3, part 2 Solution

Set 6.1: 12, 16  Set 6.2: 4, 10, 14  Set 6.3: 12, 37, 42

 

Logic Symbols: ≥ ≤ ≠ ¬ ∧ ∨ ⊕ ≡ → ↔ ∃ ∀ Set Symbols: ∈ ∉ ⊆ ⊂ ⊇ ⊃ ∅ ∪ ∩ ×

 

(6.1)

12.       Let the universal set be the set R for all real numbers and let:

 

                                    A = {x ∈ R | -3 ≤ x ≤ 0}

                                    B = {x ∈ R | -1 < x < 2}

                                    C = {x ∈ R |  6 < x ≤ 8}.

 

            Find each of the following:

 

            a.         A ∪ B              b.         A ∩ B              c.         A^c                 d.         A ∪ C

            e.         A ∩ C              f.          B^c                  g.         A^c ∩ B^c      h.         A^c ∪ B^c

            i.          (A ∩ B)^c       j.          (A ∪ B)^c

 

           

16.       Let A = {a, b, c}

                        B = {b, c ,d}

                        C = {b, c, e}

 

            a.         Find A ∪ (B ∩ C), (A ∪ B) ∩ C and (A ∪ B) ∩ (A ∪ C). Which of these sets are equal?

 

            b. Find A ∩ (B ∪ C), (A ∩ B) ∪ C and (A ∩ B) ∪ (A ∩ C). Which of these sets are equal?

 

            c. Find (A - B) - C and A - (B - c). Are these sets equal?

(6.2)

4.         The following is a proof that for all sets A and B, if A ⊆ B, then A ∪ B ⊆ B. Fill in the blanks.

 

            Proof:  Suppose A and B are any sets and A ⊆ B. [We nust show that (a)]. Let x ∈ (b). [We must show that (c).] By definition of union, x ∈ (d) (e) x ∈ (f). In case x ∈ (g), then since A ⊆ B, x ∈ (h). In case x ∈ B, then clearly x ∈ B. So in either case, x ∈ (i) [as was to be shown.]

 

           

 

Use an element argument to prove each statement in 7-19. Assume that all sets are subsets of a universal set U.

 

10.       For all sets A, B, and C,

 

                        (A - B) ∩ (C - B) = (A ∩ C) - B

 

                        (A - B) ∩ (C - B) ⊆ (A ∩ C) - B

 

                        (A ∩ C) - B ⊆ (A - B) ∩ (C - B)

                       

 

More products