Starting from:
$29.99

$23.99

Machine Problem #8 Solution

Note: The assignment will be autograded.  It is important that  you do not use additional libraries, or change the provided functions input  and output.

 

Part 1:  Setup

 

• Remote connect to an EWS machine.

 

ssh (netid)@remlnx.ews.illinois.edu

 

 

• Load python  module, this will also load pip and virtualenv

 

module load python/3.4.3

 

 

• Reuse the virtual  environment from mp1.

 

source ~/cs446sp_2018/bin/activate

 

 

• Copy mp8 into your svn directory,  and change directory  to mp8.

 

cd ~/netid

svn cp https://subversion.ews.illinois.edu/svn/sp18-cs446/_shared/mp8 . cd mp8

 

 

• Install  the requirements  through  pip.

 

pip install -r requirements.txt

 

 

• Unzip assingment8  data.zip  (You’ll find this in your svn)

 

unzip assingment8_data.zip -d data/

 

 

•  Prevent svn from checking in the data  directory.

 

svn propset svn:ignore data .

 

Part 2:  Exercise

In this exercise you will write down your own code to do K-Means clustering.  We provide

you the Iris Dataset  that  contains  data  for different kinds of flowers based on four features, sepal length,  sepal width,  petal  length,  petal  width.   For more information  on the  dataset refer to https://archive.ics.uci.edu/ml/datasets/iris.  (You have to use the data  as provided

 

 

1

2

 

 

in the data  file. Do not download the data  from the website.)

The file k means.py has a skeleton of the code you have to write.

The dataset is in  data/iris.data . You’re expected to return  the final cluster centers, upto an error of 10e−3.

 

Part 3:  Testing the Code

In  test.py we have provided  the basic test  case.  If your code is correct  it should return

ok. To test  the code, run

 

nose2

 

 

 

Part 4:  Submit

Submitting the code is equivalent to committing  the code. This can be done with the follow

command:

 

svn commit -m "Some meaningful comment here."

 

 

Lastly, double check on your browser that  you can see your code at

 

https://subversion.ews.illinois.edu/svn/sp18-cs446/(netid)/mp8/

More products