Starting from:
$35

$29

Homework 8 Solution

General  Instructions:  Put  your  answers  to  the  following  problems  into  a  PDF  document  and submit as an attachment under Content à Homework 8 for the course CptS 440 Pullman (all sections of CptS 440 and 540 are merged under the CptS 440 Pullman section) on the Blackboard Learn system by the above deadline. Note that you may submit multiple times, but we will only grade the most recent entry submitted before the above deadline.


1.   Suppose your agent is playing a 4x4 Wumpus world game and has visited locations (1,1), (1,2), (1,3), (2,3) and (3,3). The agent observes a breeze in (3,3), but no breeze in the other visited locations. Given this information, we want to compute the probability of a pit in (3,4). You may  use  px,y   and  ¬px,y   as  shorthand  notation  for  Pitx,y=true  and  Pitx,y=false,  respectively. Similarly,   you   may   use   bx,y    and   ¬bx,y    as   shorthand   notation   for   Breezex,y=true   and Breezex,y=false, respectively. Specifically:
a.   Define the sets: breeze, known, frontier and other.



b.   Following the method in the textbook and lecture, compute the probability distribution
P(Pit3,4 | breeze, known). Show your work. 


2.   Recall  the  Halloween  World  from  Homework  7.  The  full  joint  probability  distribution  for Halloween  World  is  reproduced  below.  We  are  also  given  that  Weather  and  Costume  are independent of each other, and that Party depends on both Weather and Costume. Show a Bayesian  network  consistent  with  this  information.  Be  sure  to  show  all  nodes,  links  and conditional probability tables (CPTs).


Weather:              clear                     cloudy                      rain
Costume:       yes           no           yes           no           yes           no
Party:          yes          0.084      0.032       0.18        0.06        0.09       0.024 no    0.036      0.048       0.12        0.14        0.09       0.096



Bayesian Network is as follows:

3.   Using the Bayesian network in Figure 1 below, compute the following probabilities. Show your work.

More products