Starting from:
$14.99

$8.99

Homework #7 Solution

1.  [4 points] Inference Methods  for Discrete  Markov Random  Fields

 

For  this  problem,  consider  the  following Markov  Random  Field,  where  each  node  can  be assigned one of the values in {1, 2, 3, 4, 5}:

 

 

x1                             x3

 

 

 

 

 

 

x2                             x4

 

 

 

(a)  To conduct  MAP inference on this graph  using exhaustive  search,  how many configura- tions must be checked?

Your answer:

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Can  MAP  inference  be  run  on this  graph  using  a  dynamic  programming algorithm?

Why or why not?

Your answer:

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)  To run MAP inference on this graph using loopy belief propagation, how many messages must  be computed?

Your answer:

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  [7 points] ILP Inference formulation in Discrete  Markov Random  Fields

 

 

(a)  Suppose  we have  two  variables  x1   ∈  {0, 1} and  x2   ∈  {0, 1} and  their  local evidence functions  θ1(x1)  and θ2(x2)  as well as a pairwise function  θ1,2(x1, x2 ).  Using this setup, inference solves arg maxx1 ,x2   θ1 (x1) + θ2(x2) + θ1,2 (x1, x2).  Using

 

θ1 (x1) =

 

 

θ1,2(x1 , x2) =


   1   if x1  = 0

2   otherwise       θ2(x2) =

   −1    otherwise

2      if x1  = 0 & x2  = 1


   1   if x2  = 0

2   otherwise

 

what  is the  integer  linear  programming formulation of the  inference  task?   Make  the cost function  and  constraints explicit for the  given problem,  i.e., do not  use a general formulation.

 

 

Your answer:

 

 

 

 

 

 

 

 

 

 

 

 

(b)  What  is the solution  (value and argument) to the program  in part  (a).

Your answer:

(c)  Why do we typically not use the integer  linear program  for reasonably  sized MRFs?

 

 

Your answer:

More products