Starting from:
$26.99

$20.99

Homework #2 Solution

1.    Calculate the running time of the function below. Assume that your function is implemented

              by using array list

              by  using linked list

 

Show your calculation in most convenient notation. (Big O/Teta/Omega)

 

BUBBLESORT(A)

1 for I = A. length – 1

2    for j = aA.length

3 if A(j) < A ( j – I )

4    exchange a(j) with A (j-1)

 

 

2.    Sort  the  following  functions  from  slowest  to  fastest  in  terms  of  their growth.

n2.56,log(n!), nlogn, loglogn2

3.    Prove using only the definitions of asymptotic notations

              n2 is in O(2𝑛 )

              n! is in Ω(2𝑛 )

              logn is in Ө(Log64n)

4.    Prove that 2n2 - 4n +9=ϴ(n2 ) using induction.

5.    Is Big-O an equivalence relation? Show classes and prove your answer.

6.    Calculate the running time of the loops below.

              for (int i = 1 ; i < n2 ; i+=5)

print()

 

 

              for (int i = 0 ; i < 2n ; i+=3i)

for (int j = 0 ; j <i ; j++)

if (j = target) break;

else print()

 

7.   The program in below lasts 8 second, when the the input size of the algorithm is 10. What is the working time while problem size is 160, on the same computer?

 

// Input : an integer

// Output : an integer

Function myFun(n)

{

count = 0

for i=1 to log n

for j=i to i+5

for k=1 to i*i

count = count + 1

return count

}

 

 

Note: Do not email your homework or submit it through moodle. Your submissions will be handwritten. CONTACT : Teacher

More products